67 research outputs found

    Impacts of land use, restoration, and climate change on tropical peat carbon stocks in the 21st century: Implications for climate mitigation

    Get PDF
    The climate mitigation potential of tropical peatlands has gained increased attention as Southeast Asian peatlands are being deforested, drained and burned at very high rates, causing globally significant carbon dioxide (CO2) emissions to the atmosphere. We used a process-based dynamic tropical peatland model to explore peat carbon (C) dynamics of several management scenarios within the context of simulated twenty-first century climate change. Simulations of all scenarios with land use, including restoration, indicated net C losses over the twenty-first century ranging from 10 to 100 % of pre-disturbance values. Fire can be the dominant C-loss pathway, particularly in the drier climate scenario we tested. Simulated 100 years of oil palm (Elaeis guineensis) cultivation with an initial prescribed burn resulted in 2400–3000 Mg CO2 ha−1 total emissions. Simulated restoration following one 25-year oil palm rotation reduced total emissions to 440–1200 Mg CO2 ha−1, depending on climate. These results suggest that even under a very optimistic scenario of hydrological and forest restoration and the wettest climate regime, only about one third of the peat C lost to the atmosphere from 25 years of oil palm cultivation can be recovered in the following 75 years if the site is restored. Emissions from a simulated land degradation scenario were most sensitive to climate, with total emissions ranging from 230 to 10,600 Mg CO2 ha−1 over 100 years for the wettest and driest dry season scenarios, respectively. The large difference was driven by increased fire probability. Therefore, peat fire suppression is an effective management tool to maintain tropical peatland C stocks in the near term and should be a high priority for climate mitigation efforts. In total, we estimate emissions from current cleared peatlands and peatlands converted to oil palm in Southeast Asia to be 8.7 Gt CO2 over 100 years with a moderate twenty-first century climate. These emissions could be minimized by effective fire suppression and hydrological restoration

    Multi-Hazard Assessment of Seismic and Scour Effects on Rural Bridges with Unknown Foundations

    Get PDF
    This chapter proposes a probabilistic framework for assessing seismic and scour effects on existing river-crossing bridge structures. The emphasis is on bridge structures in rural areas, for which it has been recognized that a large number of rural bridges have unknown foundation types and further are subject to both flooding-induced scour and seismic damage. With a review of the US-based rural bridges, this chapter presents a probabilistic framework for bridge performance assessment. Using a representative rural bridge model, the fragility results for the bridge reveal that scour tends to be beneficial in reducing structural damage at slight to moderate seismic intensities and to be detrimental in increasing collapse potential at high-level intensities. The demand hazard curves further quantify probabilistically the occurrence of local damage and global collapse, and systematically reveal the complex effects of scour as a hydraulic hazard on bridge structures

    Impacts of land use, restoration, and climate change on tropical peat carbon stocks in the twenty-first century: implications for climate mitigation

    Get PDF
    The climate mitigation potential of tropical peatlands has gained increased attention as Southeast Asian peatlands are being deforested, drained and burned at very high rates, causing globally significant carbon dioxide (CO2) emissions to the atmosphere. We used a process-based dynamic tropical peatland model to explore peat carbon (C) dynamics of several management scenarios within the context of simulated twenty-first century climate change. Simulations of all scenarios with land use, including restoration, indicated net C losses over the twenty-first century ranging from 10 to 100 % of pre-disturbance values. Fire can be the dominant C-loss pathway, particularly in the drier climate scenario we tested. Simulated 100 years of oil palm (Elaeis guineensis) cultivation with an initial prescribed burn resulted in 2400–3000 Mg CO2 ha−1 total emissions. Simulated restoration following one 25-year oil palm rotation reduced total emissions to 440–1200 Mg CO2 ha−1, depending on climate. These results suggest that even under a very optimistic scenario of hydrological and forest restoration and the wettest climate regime, only about one third of the peat C lost to the atmosphere from 25 years of oil palm cultivation can be recovered in the following 75 years if the site is restored. Emissions from a simulated land degradation scenario were most sensitive to climate, with total emissions ranging from 230 to 10,600 Mg CO2 ha−1 over 100 years for the wettest and driest dry season scenarios, respectively. The large difference was driven by increased fire probability. Therefore, peat fire suppression is an effective management tool to maintain tropical peatland C stocks in the near term and should be a high priority for climate mitigation efforts. In total, we estimate emissions from current cleared peatlands and peatlands converted to oil palm in Southeast Asia to be 8.7 Gt CO2 over 100 years with a moderate twenty-first century climate. These emissions could be minimized by effective fire suppression and hydrological restoration

    Soil Carbon within the Mangrove Landscape in Rufiji River Delta, Tanzania

    Get PDF
    Mangroves are among the most carbon-rich terrestrial ecosystems, primarily attributable to the soil pool. There are substantial differences in soil carbon (C) and nitrogen (N) due to the disparities in geomorphic settings and ecological drivers, but this insight is drawn primarily from observational studies. An objective inventory of carbon stocks in mangroves of the Rufiji River Delta, Tanzania was conducted. Seventy-five soil cores were collected within a 12,164 ha inventory area, comprising the northern portion of the delta. Cores were collected from intact and dwarf mangroves, agricultural fields, and mudflats. The spatial mean soil organic carbon (SOC) density in mangroves was 16.35 ± 6.25 mg C cm−3. Mean SOC density in non-vegetated mudflats was 12.16 ± 4.57 mg C cm−3, demonstrating that mangroves develop on soils with a substantial soil C stock. However, long-established mangroves had had a higher C density (17.27 ± 5.87 mg C cm−3). Using a δ13C mixing model, the source of soil organic matter in mudflats was primarily marine, while long-established mangroves was predominantly mangrove. There were small differences in SOC among long-established mangrove sites in different geomorphic settings. The proportion of marine-sourced SOC increased with soil depth in mangroves. The SOC and nitrogen of agricultural sites resemble those of mudflats, suggesting those sites are developed from relatively young forests. The SOC and nitrogen density in dwarf mangrove sites were lower than others, perhaps reflecting past disturbances

    Modeling the Effect of Land Use Change on Hydrology of a Forested Watershed in Coastal South Carolina

    Get PDF
    2008 S.C. Water Resources Conference - Addressing Water Challenges Facing the State and Regio

    Greenhouse gas emissions from croplands of China

    Get PDF
    China possesses cropland of 1.33 million km 2. Cultivation of the cropland not only altered the biogeochemical cycles of carbon (C) and nitrogen (N) in the agroecosystems but also affected global climate. The impacts of agroecosystems on global climate attribute to emissions of three greenhouse gases, namely carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O)
    • …
    corecore